

PHYSICS EXPERIMENT 1: Finding the Resultant Force

Name:	 Date:	
Partners:	 -	

- 1. **PURPOSE:** To study forces in equilibrium.
- 2. HYPOTHESIS: The resultant force of a system in equilibrium is zero.

3. PROCEDURE:

APPARATUS:	MATERIALS:	
2 ring stands	string	
2 ring clamps		
2 spring balances (0-5 N)		
1 set of laboratory		
masses		

<u>NOTE</u>

Before using the spring balances make sure they are reset to zero.

PART-A: Two forces in equilibrium

- **Step-1:** Hang a spring balance on a horizontal bar then answer these questions:
 - a) What is the scale reading?
 - b) What is the resultant force?
 - c) Is the system in equilibrium?

Step-2: Hang a 200 g mass to the spring balance then answer these questions:

- e) Is the system "at rest"?

Step-3: Hang a 500 g mass to the balance then answer these questions:

- a) What is the scale reading?
- b) What is the resultant force?
- c) Is the system "at rest"?

PART-B: Three forces in equilibrium (acting at **equal** angles)

Hang a 200 g mass to the balance as shown on the right then answer the following questions:

★ IMPORTANT: Be sure to attach the mass in the *middle* of the string.

a) Identify the *three* concurrent forces:

b) What is the reading on scale-A?	
c) What is the reading on scale-B?	
d) What is the resultant force?	
e) Is the system in equilibrium?	
f) What is the total downward force?	
g) What is the total upward force?	
h) Is the <i>total force up</i> equal to the <i>total force down</i> .	
i) Is the system at "rest"?	

j) Below, make a sketch of the concurrent forces acting on the system.(Use the origin as the point of application of the forces)

	Calculations:

PART-C: Three force	ees in equilibrium (acting at unequal an	ngles)
Hang a 200 g mass to	o the balance as shown on the right (F _C	;).
★ IMPORTANT: a) Identify the <i>t</i>	<i>Do not</i> hang the mass in the <i>middle</i> of the string.	$F_{A} F_{B}$ $F_{C} Dots$ $Paper$
b) What is the r	reading on scale-A (F _A)? reading on scale-B (F _B)?	
d) What is the	resultant force?	
e) Is the system	in equilibrium?	
f) What is the t	otal downward force?	
g) What is the t	total upward force?	
h) Are total for	ces up equal to total forces down?	
i) Is the system	n "at rest"?	

j) Below, make a sketch of the concurrent forces acting on the system.

	Calculations:

4. CONCLUSION: _____